فشردگی شکست ضربی برای نگاشت های خطی بین جبرهای باناخ

thesis
abstract

در این پایان نامه به بررسی فشردگی وفشردگی ضعیف نگاشت های چند خطی در فضای جبر باناخ می پردازیم که ضربی بسته نیستند. در همین راستا st? با ضابطه ?? t(a b)_ t(a)t(b) را با عنوان شکست ضربی مطرح می کنیم. با معرفی شماری از موارد مرتبط نظیر نگاشت های cf همریختی ( wcf همریختی) کران دار ، ارائه شده است . در پایان توجه خود را به نوع خاصی از جبر های باناخ نظیر جبر های باناخ نیم ساده و c* جبر های جابجایی معطوف کرده و رفتار نوع های متفاوتی از نگاشت های ضربی بسته را بررسی می کنیم

similar resources

نگاشت های تقریبا ضربی حافظ طیف روی جبرهای باناخ

در این پایان نامه مفهوم تقریبا ضربی بودن نگاشت و پیوستگی خودکار درحالتی که تقریبا ضربی است را بررسی می کنیم. همچنین چند نسخه تقریبی از قضیه ی گلیسون -کاهان -زلازکو و نگاشت های تقریبا ضربی که نزدیک ضربی هستند را بیان و مطالعه می کنیم. همچنین به بررسی جبرهایی می پردازیم که دارای این ویژگی هستند که $amnm$-جبر‎‎ نامیده می شوند.‏در این پایان نامه ‏بعضی از ویژگی های شبه طیف‏،$amnm$-جفت‎‎‏، ...

جبرهای باناخ انقباض پذیر

فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.

full text

نگاشت‌های نگهدارنده جفت‌های عملگری باناخ روی جبرهای عملگری

فرض کنید ‎$mathcal{B(X)}$‎ جبر شامل تمام عملگرهای خطی کران‌دار روی فضای باناخ ‎$mathcal{X}$‎ و ‎$phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$‎ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر ‎$A in mathcal{B(X)}$‎ و ‎$x in mathcal{X}$‎، اسکالرهای ‎$alpha‎ , ...

full text

نگاشت های ضربی - محیطی جبرهای لیپشیتس و نگاشت های پوشای ضعیفاً ضربی محیطی جبرهای لیپشیتس برجسته

در این پایان نامه ابتدا به معرفی جبرهای لیپشیتس می پردازیم و برخی از خواص آن ها را بیان می کنیم. در ادامه نگاشت های ضربی - محیطی بین جبرهای لیپشیتس را مورد بررسی قرار می دهیم و ثابت می کنیم هر نگاشت ضربی - محیطی بین جبرهای لیپشیتس یک عملگر ترکیبی موزون است. در پایان نگاشت های پوشای ضعیفاً ضربی محیطی بین جبرهای لیپشیتس برجسته را مورد مطالعه قرار می دهیم و نشان می دهیم هر نگاشت پوشای ضعیفاً ضربی مح...

15 صفحه اول

نگاشت های خطی حافظ طیف دوسویی روی جبرهای باناخ ماتریسی

در این پایان نامه ثابت شده که یک نگاشت خطی حافظ طیف دو سویی روی دو جبر باناخ ماتریسی، یک همریختی جردن است.

نگاشت های خطی حافظ طیف دوسویی روی جبرهای باناخ ماتریسی

ر این پایان نامه‏، پاسخی مثبت به حالت خاصی از مسئله‎‎‎‎ آیوپتیت خواهیم داد که خود ریشه در مسئله کاپلانسکی دارد و به صورت زیر مطرح شده است:‎ ‎“‎آیا یک نگاشت خطی حافظ طیف دوسویی بین دو جبر باناخ نیم ساده یکدار لزوما یک همریختی جردن است؟‎” پاسخی مثبت به این سوال را، در قالبی به دست می آوریم که یکی از این دو جبرباناخ، دلخواه است و دیگری شامل مجموعه ای از ماتریس های 2×2 است

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023